

V. Saliba-Colombani · M. Causse · D. Langlois
J. Philouze · M. Buret

Genetic analysis of organoleptic quality in fresh market tomato.

1. Mapping QTLs for physical and chemical traits

Received: 19 January 2000 / Accepted: 26 May 2000

Abstract Improving organoleptic quality is an important but complex goal for fresh market tomato breeders. A total of 26 traits involved in organoleptic quality variation were evaluated, in order to understand the genetic control of this characteristic. A recombinant inbred line (RIL) population was developed from an intraspecific cross between a cherry tomato line with a good overall aroma intensity and an inbred line with a common taste but with bigger fruits. Physical traits included fruit weight, diameter, color (L,a,b), firmness and elasticity. Chemical traits were dry matter weight, titratable acidity, pH, and the contents of soluble solids, sugars, lycopene, carotene and 12 aroma volatiles. RILs showed a large range of variation for most of the traits and many of them were transgressive. Some correlations between aroma volatiles were in accordance with the metabolic pathway they originated from. A total of 81 significant QTLs were detected for the 26 traits by simple and composite interval mapping. They were mainly distributed in a few regions on chromosomes 2, 3, 4, 8, 9, 11 and 12. Major QTLs ($R^2 > 30\%$) were detected for fruit weight, diameter, and color, and for six aroma volatiles. Co-localization of QTLs controlling correlated traits was mainly found on chromosome 2. QTLs for fruit weight and sugar content or dry matter weight were often co-localized. However, a QTL for soluble-solids content and dry matter weight have been detected on chromosome 9 in a region without fruit weight QTLs. QTLs for seven aroma volatiles, lycopene content

Communicated by H.C. Becker

V. Saliba-Colombani · M. Causse (✉) · J. Philouze
INRA, Centre d'Avignon,
Unité de Génétique et d'Amélioration des Fruits et Légumes,
Domaine Saint-Maurice, BP 94, 84143 Montfavet, Cedex, France
e-mail: mcausse@avignon.inra.fr

D. Langlois
INRA, Centre de Dijon, Laboratoire de Recherche sur les Arômes,
17, rue Sully, 21034 Dijon, France

M. Buret
INRA, Centre d'Avignon,
Station de Technologie des Produits Végétaux,
Domaine Saint-Paul, 84 914 Avignon, Cedex 9, France

and fruit color were also co-localized. The QTL localizations were compared with those detected in crosses between *Lycopersicon esculentum* and wild tomato species.

Keywords Tomato · Quality · QTL · Aroma · Composite interval mapping

Introduction

The considerable efforts of tomato breeders have mainly emphasized yield, fruit size, fruit appearance (lack of defects and attractive color), disease resistance and, more recently, fruit firmness and shelf life (to allow long-travel trading). Currently, however, consumers complain about the lack of pleasant sensory qualities of tomato fruit. According to a recent market survey, the sensory quality of a food product has been ranked higher than its nutritional value, price or safety, from a consumer point of view (Berger 1996).

Organoleptic characteristics of a fruit are the sensations perceived by the five senses while consuming it. Organoleptic quality thus involves taste and aroma (both named flavor, since their distinction is sometimes difficult to make) but also the color and the texture of the fruit. Many studies on tomato described the chemical composition of the fruit (for a review see Davies and Hobson 1981). Flavor mainly depends on sugar and acid contents but also on the sugar/acid ratio (Dennison et al. 1953; Stevens 1972). However, the weak correlation between the tomato-like flavor and sugar and acid contents justified the study of volatile composition. Many researchers have identified and quantified aroma volatiles essential to tomato flavor (reviewed in Petro-Turza 1987). With the advent of combined gas chromatography-mass spectrometry systems (GC-MS), analysis of food aroma was greatly facilitated, particularly the isolation and the identification of volatiles (Adda and Richard 1991). More than 400 aroma volatiles were identified in tomato fruit but they are not all equally important for the development of tomato flavor (Petro-Turza 1987). The

influence of variety (Langlois et al. 1996), ripening stage (Baldwin et al. 1991) and storage conditions (Stern et al. 1994) on the most important aroma volatiles was proved, but little is known about their genetic control and the genes responsible for their variation.

Several attempts have been made to improve the sugar/acid ratio and to increase dry matter weight. However, breeding for organoleptic quality has been severely restricted by the lack of efficient selection criteria and by the polygenic nature of the trait. One of the present preoccupations of tomato breeders is to associate high fruit firmness, shelf life, a good flavor, and many disease resistance genes in the same variety. For this purpose, both efficient and easy to measure criteria are needed. Sensory analysis can efficiently describe flavor and texture, but is not of practical use for breeders since large trained panels are necessary for several weeks of analysis. Physical and chemical methods can also be used to evaluate components of texture and flavor, like fruit firmness, and the contents of sugars, acids and aroma volatiles.

Genetic markers have been an important tool to enhance the knowledge of the genetic control of complex quantitative traits. During the past several years, DNA-based markers have been successfully used to map loci controlling quantitative trait variation. Quantitative trait loci (QTLs) were detected in tomato for many important traits such as yield (Eshed and Zamir 1995), disease resistance (Mutschler et al. 1996), tolerance to abiotic stress (Foolad et al. 1998) and plant architecture (de Vicente and Tanksley 1993; Paran et al. 1997). The QTL approach was mainly used to localize genomic regions controlling the quality traits of processing tomato (Paterson et al. 1988). QTLs for fruit weight, dry matter weight, soluble-solids content, pH, fruit color and fruit firmness have been detected in several segregating populations derived from interspecific crosses (Paterson et al. 1988; Goldman et al. 1995; Eshed and Zamir 1996; Grandillo and Tanksley 1996; Bernacchi et al. 1998; Chen et al. 1999). However, no previous effort has been made to map and characterize QTLs contributing to the organoleptic quality of fresh market tomato.

In order to better understand the genetic control of the organoleptic quality of fresh market tomato, we studied the genetic variation of physical, chemical and sensory components. The physical components involved texture and fruit appearance. The chemical components were dry matter weight, sugar content, titratable acidity, pH, and also aroma volatiles and pigment contents. The sensory components will be detailed in a companion paper (Causse et al. 2000). A genetic map was constructed using a population derived from a cross between a cherry tomato line, which exhibited a high overall aroma intensity, and a large-fruited line with common taste (Saliba-Colombani et al. 2000). The purposes of the present study were: (1) to study the phenotypic correlations among and between physical and chemical components of organoleptic quality for fresh, market tomato, and (2) to identify the chromosomal localization and genetic effects of QTLs involved in the variation of these components.

Materials and methods

Plant material

The plant material employed was described in Saliba-Colombani et al. (2000). F_7 recombinant inbred lines (RILs) were developed from an intraspecific cross between two inbred lines Cervil (C) and Levovil (L). Cervil is a cherry tomato [*Lycopersicon esculentum*, var. *cerasiforme* (Dun.) Gray] with small fruits (6–10 g). It was chosen for its good taste and high aroma intensity. Levovil (*L. esculentum* Mill.) is a line with bigger fruits (90–160 g) and a common taste. A subset of 144 RILs, from the 153 RILs used for map construction, was chosen for QTL detection.

Evaluation of the RILs

The 144 RILs were grown in a heated greenhouse from February to June 1996 in a fully randomized trial at Châteaurenard (Southern France). A plot of six F_7 plants represented each RIL. The parental lines (three plots each) and their F_1 hybrid (nine plots) were included as controls to evaluate the environmental variation.

During 6 weeks (from May to June), fruits were harvested daily in bulk on the six plants of each plot. Fruits were harvested on the basis of their red color so that we could compare them at a homogeneous ripening stage. Thirty two physical and chemical traits were measured on a total of 90 fruits per RIL (15 fruits per week). Fruit by fruit evaluation was first achieved for physical traits: fruit weight (FW), fruit diameter (FD), fruit firmness (FIR), and fruit elasticity (ELA). Fruit firmness and fruit elasticity were evaluated by a penetrometer developed at INRA-Montfavet by F. Duprat. The fruit was compressed between two steel plates. A force was applied by the upper plate to deform the fruit by 5% of its diameter and the resulting deformation was measured. FIR is the force by surface unit needed to deform the fruit by 5% of its initial diameter. ELA measures the extent of the fruit deformation after its compression (force/deformation). External color was measured by a Minolta chromameter which resulted in three parameters: lightness (L), and chromaticity coordinates ("a", a green-to-red scale, and "b", a blue-to-yellow scale). The fruits were then cut and frozen (-30°C) for further chemical analyses. Chemical analyses were achieved on fruit frozen powder derived from blending fruits with liquid N_2 . Chemical traits were total dry matter weight (DMW), soluble-solids content (SSC), sugar content (SUC), titratable acidity (TA), pH, lycopene content (LYC) and carotene content (CAR). Chemical analyses were achieved as recommended in Lime et al. (1957) and the SCAR Agro-Food tomato Working Group (1991). The contents of 18 aroma volatiles, which were quantitatively different between the two parents or representative of a major metabolism, were analyzed for each RIL as described by Bertin et al. (2000). In order to inhibit enzymes involved in the aroma volatile degradation, ammonium sulphate was added to tomato purée. The serum was extracted with pentane-dichloro-methane. Aroma volatiles were separated and quantified by a combined Gas Chromatography-Mass Spectrometry (GC-MS) system as described by Langlois et al. (1996). Table 1 shows the aroma volatiles analyzed, their origin, their chemical structure and their associated odor evaluated by combined hedonic response measurement (CHARM) analyses (Acree et al. 1984). Aroma volatile quantities were expressed as micrograms of the internal standard (used in extraction) per kilogram of fresh fruit. Overall, six measurements (15 fruits per measurement per RIL) were achieved on physical and chemical traits during the 6-week harvest (one measurement per week). Only three measurements of aroma volatile content were performed corresponding each to fruits harvested during 2 weeks (30 fruits per measurement per RIL).

Data analysis

The mean, standard deviation, environmental and genetic variances of each trait were estimated for the two parents, their F_1 hybrid

Table 1 The 18 studied aroma volatiles. Codes, metabolism, origin and equivalent odor indicated by combined hedonic response (CHARM) analysis

Volatile aroma	Code	Metabolism	Structure	CHARM equivalent odor
Pent-1-en-3-one	N3N	Fatty acids		Chemical, green note, plastic
Pentanal	PNA	Fatty acids		
Pentan-3-one	PNN	Unknown		
2-Methylbut-2-enal	BEA	Amino acids		
Hexanal	HXA	Fatty acids		Green, green tomato, grass
3-Methylpentan-1-ol	MNO	Amino acids		
(E)-Hex-2-enal	X2A	Fatty acids		Apple, almond
Hex-3-en-1-ol	X3O	Fatty acids		Green
2-(Methylthio)ethanol	MEO	Unknown		
3-(Methylthio)propanal	MTA	Amino acids		Potato
6-Methylhept-5-en-2-one	MHN	Lycopene		Green bean, parsley
6-Methylhept-5-en-2-ol	MHO	Lycopene		
2-Isobutylthiazole	IBT	Unknown		
2-Phenylethanal	PEA	Amino acids		Flower, rose, green
Orthomethoxyphenol	MYP	Phenol		Mint, green note, camphor, clove
Eugenol	EUG	Phenol		Spices, banana, clove
Geranylacetone	GYN	Lycopene		Green, fried fat
Beta-ionone	BIO	Carotenoids		

and the RILs. There was no plot repetition for the RILs, but each of the 6-week measurements (three measurements for aroma volatiles) was considered as a repetition. Differences among lines and among weeks were tested by ANOVA. Heritabilities were estimated as follows:

$$h^2 = \sigma^2_G / (\sigma^2_G + \sigma^2_p + \sigma^2_e), \text{ where } \sigma^2_G = \sigma^2_p - \sigma^2_{\text{Plot}}$$

with σ^2_G the genetic variance, σ^2_p the phenotypic variance, σ^2_{Plot} the residual variance estimated on controls (when a significant difference was detected between control plots), and σ^2_e the residual variance. The average values of the repetitions over weeks were used for subsequent analyses. Phenotypic correlations among traits were estimated by Spearman coefficient. Transgressions were investigated by calculating the number of RILs higher or lower than the highest or lowest parent by at least 2-fold the standard deviation (SD) of the parents. For traits deviating from normality, several transformations (log, square root and cubic root) were tested. The transformation that gave the least-skewed result was used for the QTL analysis.

Map construction and QTL analysis

Molecular markers analyses were as reported in Saliba-Colombani et al. (2000). Linkage analysis was performed with the software package MAPMAKER/EXP version 3.0 (Lander et al. 1987; Lincoln et al. 1992). Recombination fractions were converted into map distances in centimorgans (cM) using the Kosambi mapping function (Kosambi 1944).

Averages of the 6-week values (three for aroma volatiles) for each RIL were used for QTL analyses. QTL detection was performed by interval mapping (IM) (Lander and Botstein 1989) and composite interval mapping (CIM) (Zeng 1993, 1994) using QTL Cartographer software (Bastien et al. 1997). A Forward-Backward stepwise regression was performed to choose co-factors before

performing QTL detection by CIM. Five co-factors, with the highest F values, were taken into account. A window size of 10 cM around the test interval, where the co-factors were not considered, was chosen (model 6 of QTL Cartographer). A permutation test was performed with QTL Cartographer to estimate appropriate significant thresholds for both IM and CIM models. After 1000 permutations, LOD thresholds of 2.36 and 2.56 were chosen for IM and CIM, respectively, corresponding to a genome-wise significance level of $\alpha = 0.10$. When two QTLs were detected by CIM within less than 20 cM, only the most significant one was retained. For each QTL, the position, the additive effect, and the percentage of phenotypic variation explained were estimated. Epistatic interactions between the 84 RFLP markers present in the framework map were analyzed by two-way analyses of variance for all pairwise combinations of marker loci. Only interactions with $P < 0.0001$ were considered.

Results

Distribution of phenotypic traits

The 32 physical and chemical traits studied showed continuous variation (Table 2). The content of the aroma volatile MYP (detailed codes in Table 1) showed a bimodal distribution. Analyses of variance indicated highly significant differences among the 6 weeks of harvest for many traits (data not shown). Significant differences were also detected among the 144 RILs for all traits except six aroma compounds (N3N, PNN, X2A, MHO, GYN and BIO), which were removed from the subsequent analyses. The parental lines showed significant differences

Table 2 Variation of physical and chemical traits. Average values of the parent lines and their F_1 hybrid are detailed. Significance level of the comparison test of Cervil vs. Levovil means is indicated by (C vs. L). Recombinant inbred lines are described by mean, standard deviation (SD), range of variation and heritability. The transformation used for QTL detection, and the number of lines showing transgression (see Materials and methods), are indicated. fm = fresh matter

Item	Trait	Code	Parents and F_1 hybrid			RILs			Heritability	Transformation	Transgression
			Cervil	Levovil	Hybrid	C vs. L	Mean (SD)	Range			
Physical traits	Fruit weight	FW (g)	7.38	125.20	29.56	***	24.36 (4)	10.8–71.3	0.75	Log	No
	Fruit diameter	FD (cm)	2.46	6.27	3.92	***	3.66 (0.2)	2.77–5.28	0.86	Log	No
	Fruit firmness	FIR (Pa)	35 080	34 920	32 430	ns	39 990 (4842)	28 130–57 280	0.63	Log	21
	Fruit elasticity	ELA (N/cm)	12.41	34.37	19.37	***	22.40 (2.2)	16.9–38.4	0.78	Log	No
Chemical traits	L		38.12	42.13	38.03	***	38.85 (1.01)	36.8–43.5	0.55	Log	No
	a		14.87	15.96	13.33	ns	13.98 (1.9)	6.10–20.8	0.68	Log	29
	b		17.43	24.83	16.54	***	18.06 (1.7)	14.3–26.1	0.55	Log	No
	Dry matter weight	DMW (g/100 g fm)	10.59	5.35	8.74	***	8.36 (0.46)	5.5–10.8	0.85	Log	No
Aroma volatiles	Soluble-solids content	SSC (Brix)	8.80	5.06	7.27	***	7.18 (0.71)	4.4–9.4	0.58	Log	No
	Sugar content	SUC (g/100 g fm)	4.32	3.09	4.04	***	4.01 (0.42)	2.9–5.3	0.61	Log	No
	Titratable acidity	TA (meq/100 g fm)	11.80	5.06	8.96	***	7.82 (0.62)	4.2–11.7	0.81	Square root	1
	pH		4.20	4.23	4.19	ns	4.22 (0.00)	4.1–4.4	0.51	Log	12
Chemical traits	Lycopene content	LYC (µg/100 g fm)	1949	1935	2017	ns	2024 (834)	981–3199	0.10	Log	No
	Carotene content	CAR (µg/100 g fm)	1350	962.90	1126	***	1183 (244)	877–1786	0.25	Square root	No
	Pent-1-en-3-one	N3N (µg/kg)	12.18	3.34	2.09	ns	8.34 (15)	0.3–75.5	—	—	—
	Pentanal	PNA (µg/kg)	26.06	20.42	23.09	ns	23.27 (12.2)	4.5–63	0.23	Square root	2
Chemical traits	Penitan-3-one	PNN (µg/kg)	0.42	0.35	0.24	ns	0.40 (0.24)	0.1–1.7	—	—	—
	2-Methylbut-2-enal	BEA (µg/kg)	21.12	1.44	7.57	***	6.27 (6.15)	0.5–22	0.19	Cubic root	No
	Hexanal	HXA (µg/kg)	46.40	136.80	56.86	***	61.26 (40)	15.7–255.7	0.30	Square root	No
	3-Methylpentan-1-ol	MNO (µg/kg)	2.24	0.94	0.50	ns	0.24 (0.79)	0.05–10.8	0.88	Log	99
Chemical traits	(E)-Hex-2-enal	X2A (µg/kg)	74.94	49.88	49.15	ns	62.18 (43)	6.4–339.7	—	—	—
	Hex-3-en-1-ol	X3O (µg/kg)	12.27	11.71	9.64	ns	11.60 (3.7)	4.7–29.9	0.53	Log	10
	2-(Methylthio)ethanol	MBO (µg/kg)	412.20	13.66	106.50	***	133.70 (56)	16.2–557.4	0.78	Cubic root	1
	3-(Methylthio)propanol	MTA (µg/kg)	99.00	15.60	58.53	***	61.98 (33)	6.6–662	0.76	Log	9
Chemical traits	6-Methylhept-5-en-2-one	MHN (µg/kg)	6.28	8.92	9.58	ns	5.95 (3.53)	1.9–16.4	0.14	Square root	No
	6-Methylhept-5-en-2-ol	MHO (µg/kg)	0.12	0.36	0.08	ns	0.19 (0.20)	0.006–1.3	—	—	—
	2-Isobutylthiazole	IBT (µg/kg)	0.04	0.58	0.07	*	0.05 (0.05)	0.006–0.3	0.47	Log	No
	2-Phenylethanal	PEA (µg/kg)	43.90	7.51	19.55	***	26.43 (14.9)	2.5–169.8	0.72	Cubic root	8
Chemical traits	Orthomethoxyphenol	MYP (µg/kg)	2.88	55.72	1.63	***	18.34 (13.4)	1–194	0.87	Log	7
	Eugenol	EUG (µg/kg)	0.89	5.39	0.47	***	0.89 (1.05)	0.5–14.8	0.82	Log	6
	Geranylacetone	GYN (µg/kg)	0.94	1.07	0.90	ns	0.93 (0.63)	0.03–4.4	—	—	—
	Beta-ionone	BIO (µg/kg)	0.34	0.25	0.05	ns	0.26 (0.26)	0.003–0.8	—	—	—

Table 3 Phenotypic correlations among physical and chemical traits in the RIL population. Only significant correlations are shown ($P < 0.05$ and $* P < 0.01$, ns (non significant)

Fig. 1 Linkage map of the tomato genome based on an intraspecific RIL population of a cross between a cherry tomato line and a large fruit line. Names of the markers, on the right of chromosomes, are described in Saliba-Colombani et al. (2000). QTLs detected by CIM and IM are in **bold**, those only detected by CIM are in *normal letters*, and those only detected by IM are in *italicized*. QTL codes are followed by two *numbers*: first the chromosome number and second the number of the QTL on the chromosome. An arrow was added when a few QTLs mapped to the same locus

for most of the traits (Table 2). Cervil showed higher levels than Levovil (by at least two standard-deviation units) for traits describing fruit composition. Conversely, Levovil showed higher levels for the physical traits and for four aroma volatiles (by at least three standard-devia-

tion units). The F₁ hybrid had values intermediate between the two parent means for most of the traits. Compared to Cervil, all the RILs showed bigger, firmer, and more-elastic fruits. The RILs showed higher values than Levovil for contents of soluble solids, sugar, and MEO and MTA aroma volatiles. RILs showed a very large range of variation for the 12 retained aroma volatiles. For example, the MNO content varied in RILs from 0.05 to 10.75 µg/kg, and the MTA content varied from 6.6 to 662 µg/kg. Based on extreme values of RILs, transgressive segregations were detected in both directions for most of the traits. Nevertheless, only nine traits showed transgressive segregation with means that were higher or lower than the highest or lowest parent by at least 2 SDs, re-

spectively (Table 2). Heritabilities were high (> 0.5) for all the physical traits and most of the chemical traits (Table 2). The contents of lycopene, carotene and some aroma volatiles showed low heritability (< 0.3). Deviation from normality characterized most of the traits (Table 2). None of the tested transformations completely restored the normality of MYP and EUG.

Correlations

Phenotypic correlations among the 26 traits are detailed in Table 3. Fruit weight and fruit diameter, both highly correlated, were positively correlated to fruit elasticity but negatively correlated to fruit firmness. Both fruit firmness and elasticity were positively correlated with color parameters. Among the chemical traits, the strongest positive correlations were observed between dry matter weight on one hand and soluble-solids content, sugar content and titratable acidity on the other hand. Aroma volatiles presented a complex network of correlations. A few correlations were significant between aroma volatiles and other chemical traits. MHN and EUG were negatively correlated to the major chemical components of the fruit, while MNO was positively correlated to these traits. Lycopene and carotene contents were positively correlated together, as well as to PNA, IBT and HXA. Lycopene content was positively correlated to the MHN content. Some correlations were also observed between physical and chemical traits like fruit weight and fruit elasticity which were negatively correlated to most of the chemical traits. Fruit-color parameters L and b were also negatively correlated to dry matter components. The color parameter a was positively correlated to lycopene content but also to the aroma volatile MHN.

Map construction and QTL analysis

The complete map included one morphological, 132 RFLP, 33 RAPD and 170 AFLP markers (Saliba-Colombani et al. 2000). A framework map with 103 markers (one morphological, 84 RFLPs, two RAPDs, and 16 AFLPs) and an average interval of 10 cM, was selected for QTL analyses. Regions in the middle of chromosomes 1 and 4 were still not covered. The map covered about 85% of the tomato genome when compared to the high-density genetic map of tomato (Tanksley et al. 1992).

QTLs were detected for all traits (Fig. 1). The results of analyses performed on transformed data are reported. A total of 81 significant associations between molecular markers and phenotypic data were detected by IM and CIM (Table 4 and Fig. 1). This corresponded to a minimal number of QTLs, as in 35 cases, two QTLs closely linked ($d < 20$ cM) were detected by CIM, but we only retained the most significant one. IM and CIM almost detected the same QTLs but the LOD-score values were not identical with the two methods, especially when two QTLs were detected on the same chromosome. Among

the 81 QTLs, 14 were only significant by CIM and five were only significant by IM. However, their LOD-scores in IM and CIM, respectively, fell just below the thresholds (2.36 for IM and 2.56 for CIM) or else their closest marker effects were among the five most-significant effects detected by multiple regression.

Sixteen (28%) of the eighty one QTLs showed an effect opposite to that expected from the means of the parents. A maximum of six QTLs (for titratable acidity) and a minimum of one QTL (for aroma volatiles MNO, MYP and MHN) controlled each trait. The individual percentage of explanation for the phenotypic variation (R^2) varied between 87.4% for the aroma volatile MYP and 8.3% (the lowest limit of detection) for the a color parameter. Nine QTLs showed a R^2 lower than 10%, 60 QTLs a R^2 between 10% and 30% and 12 QTLs a R^2 between 30% and 87%. Hereafter, only QTLs detected by CIM will be detailed.

Fruit weight and fruit diameter each involved five QTLs on chromosomes 2 (two QTLs), 3, 11 and 12. All these QTLs had allelic effects in the expected direction with the Levovil allele increasing the diameter and weight of the fruit. The most significant QTLs *fw2.2* and *fd2.2* explained 46% and 38% of the fruit-weight and fruit-diameter phenotypic variation. Fruit firmness was affected by one QTL on chromosome 4, while five QTLs were detected for fruit elasticity on chromosomes 1, 2, 3, 4 and 9. The color parameters L, a and b were each affected by three QTLs on chromosomes 2, 4 and 9.

For dry matter weight, five QTLs were detected on chromosomes 2 (three QTLs), 4 and 9, with the most-significant QTL *dmw2.2* explaining 25% of the phenotypic variation. The Cervil allele increased the dry matter weight as expected for all QTLs, with one exception on chromosome 4. Three QTLs controlled the soluble-solids content, two on the same regions as QTLs for dry matter weight on chromosome 2 and one on chromosome 9. Variation of the sugar content was explained by four QTLs on chromosomes 2 (two QTLs), 3 and 11. As expected, the Cervil allele increased the sugar content at three QTLs, while the Levovil allele increased the trait value at the QTL on chromosome 3. Titratable acidity was controlled by six QTLs with the most significant one (*ta9.1*) accounting for 22% of the phenotypic variation. As expected, Cervil alleles at all these QTLs increased the titratable acidity. Lycopene content was controlled by two QTLs on chromosomes 4 and 11; and three QTLs controlled carotene content on chromosomes 2, 3 and 8. QTLs for aroma volatiles were mainly localized on chromosomes 2, 4, 8 and 9 (Fig. 1). Among the 26 QTLs detected for aroma volatiles, the R^2 was lower than 10% in two cases, it varied from 10% to 30% for 18 QTLs, and was higher than 30% for six QTLs. Some aroma-volatile variations were mostly explained by one major QTL, as for the MYP and MNO contents with *my9.1* and *mno4.1* accounting for 87% and 63% of the phenotypic variation, respectively. By contrast, three and five QTLs were involved in the variation of EUG and MTA contents, respectively. Levovil alleles increased aroma-volatile values for half of the QTLs.

Table 4 QTLs detected for physical and chemical traits based on CIM and IM analyses in the RIL progeny. The most-closely associated marker locus is indicated. When more than one QTL per trait was detected by CIM in less than 20 cM, the number of QTLs is indicated in the column “linked QTLs”, but only the most significant is described. The distance of the QTL in cM (Kosambi) from the nearest marker is indicated by Pos. LOD is the log-likelihood at that position. Effect is the absolute value of the difference

(after transformation) of the two allelic classes at the QTL. PVE is the percentage of phenotypic variation explained by the QTL. The parent increasing the trait value is shown in the parent column. Data for non-significant (ns) effects in one method are indicated in italics. Markers introduced as co-factors in the CIM model are designated by cof. When the co-factor was different from the marker QTL, the distance (in cM) between the co-factor and the QTL localization was added (cof +)

Trait	QTL	Marker	Chr.	Composite interval mapping								Interval mapping		
				Linked QTLs	Pos.	LOD	Effect	PVE	Parent	COF	Pos.	LOD		
													Effect	PVE
Fruit weight	fw2.1	CT103	2	2	5.19	4.32	0.10	17.4	L	cof	8	3.37	0.13	13.3
	fw2.2	TG492	2		3.94	17.62	0.19	46.2	L	cof+1	2	13.99	0.22	40.9
	fw3.1	CT085	3		1.78	10.85	0.14	31.8	L	cof	6	5.39	0.15	20.2
	fw11.1	CT065	11		0.11	10.46	0.13	29.3	L	cof	0	4.45	0.13	13.9
	fw12.1	CT120	12	2	1.74	3.73	0.08	13.2	L	–	2	3.69	0.12	12.4
Fruit diameter	fd2.1	TG484	2	2	2.01	6.29	0.04	22.4	L	cof	7	12.65	0.07	35.0
	fd2.2	TG492	2		4.94	13.72	0.06	38.3	L	cof	2	14.70	0.08	42.4
	fd3.1	H42M47–112L	3	2	10.23	9.11	0.04	27.8	L	cof+2	7	4.38	0.05	16.5
	fd11.1	TG036	11	2	2.91	11.52	0.05	34.5	L	cof+6	7	4.34	0.05	14.7
	fd12.1	<i>SuS3</i>	12	2	5.95	3.66	0.03	17.5	L	–	8	5.08	0.06	22.8
Firmness	fir4.1	TG287	4		5.14	10.85	0.07	33.3	C	cof+1	4	9.78	0.07	31.9
	fir9.1	CT032	9		0.00	2.25 ns	0.03	10.35	L	cof	0	3.20	0.04	9.8
Elasticity	ela1.1	TG077	1		2.10	3.03	0.05	10.2	L	–	2	3.03	0.05	10.3
	ela2.1	TG167	2	2	0.88	7.67	0.06	24.9	L	cof	1	6.13	0.07	20.1
	ela3.1	CT085	3	2	0.78	3.52	0.04	11.3	L	cof	8	2.18 ns	0.04	8.7
	ela4.1	TG287	4		4.14	2.68	0.04	9.8	C	cof+2	2	2.68	0.05	9.2
	ela9.1	CT032	9	2	1.01	4.17	0.05	13.9	L	cof	1	2.88	0.05	10.3
L	L2.1	OPAE4–0.9C	2		4.98	5.76	0.01	20.1	L	cof	7	3.40	0.87	13.0
	L4.1	TG287	4		1.14	6.56	0.01	19.8	C	cof	1	6.83	1.11	20.5
	L9.1	CT032	9	2	1.01	5.17	0.01	16.5	L	cof	1	4.83	0.98	15.7
a	a2.1	TG484	2		3.01	3.88	1.64	14.1	L	cof	3	1.87 ns	1.49	7.3
	a4.1	TG287	4		2.14	10.35	2.77	30.8	C	cof	1	8.59	2.77	24.7
	a9.1	CT032	9		0.00	2.66	1.32	8.3	L	cof	0	2.65	1.61	8.2
b	b2.1	TG492	2		4.94	5.06	0.03	15.7	L	cof	5	3.30	0.03	10.4
	b4.1	TG287	4		5.14	6.23	0.04	19.3	C	cof+1	2	6.25	0.04	19.4
	b9.1	CT032	9	2	1.00	8.82	0.04	26.5	L	cof	1	7.02	0.05	22.1
Dry matter weight	dmw2.1	TG033	2		9.01	2.94	0.62	16.0	C	–	15	2.05 ns	0.71	10.0
	dmw2.2	TG484	2	2	4.01	7.38	0.96	25.6	C	cof+3	7	11.30	1.25	31.8
	dmw2.3	TG492	2	2	3.95	2.88	0.63	9.9	C	cof+2	1	10.25	1.21	29.7
	dmw4.1	CT192	4		0.11	3.11	0.51	9.5	L	cof	0	2.10 ns	0.58	6.5
	dmw9.1	CT032	9		0.00	5.70	0.71	16.8	C	cof	0	2.84	0.67	8.8
Soluble solids content	ssc2.1	CT103	2	2	5.19	3.58	0.59	14.7	C	cof+7	10	8.26	0.94	26.5
	ssc2.2	OPAE4–0.9C	2	2	3.98	4.57	0.68	18.6	C	cof	2	10.26	1.01	31.9
	ssc9.1	CT032	9	2	0.00	4.36	0.52	13.3	C	cof	2	2.14 ns	0.49	7.3
Sugar content	suc2.1	CT103	2		6.20	2.66	0.34	11.9	C	cof	11	7.62	0.53	22.5
	suc2.2	OPAE4–0.9C	2		2.98	7.40	0.47	25.3	C	cof	2	9.19	0.59	29.0
	suc3.1	TG214	3		0.00	2.78	0.25	8.8	L	cof	1	1.90 ns	0.28	6.5
	suc10.1	TG001	10		9.00	2.39 ns	0.26	9.3	C	cof	11	2.94	0.34	9.5
	suc11.1	TG036	11	2	6.90	3.32	0.29	11.2	C	cof+2	5	3.42	0.39	12.5
Titratable acidity	ta1.1	TG077	1		0.20	3.70	0.12	11.2	C	cof	0	4.89	0.18	14.9
	ta2.1	TG033	2	2	14.01	3.22	0.14	17.3	C	–	14	2.24 ns	0.17	12.4
	ta2.2	TG492	2	2	3.94	5.46	0.15	17.2	C	cof	3	4.50	0.18	14.3
	ta3.1	H42M47–112L	3		8.23	4.88	0.16	18.1	C	cof+4	7	4.70	0.19	17.3
	ta9.1	CT032	9	2	0.00	7.80	0.19	22.4	C	cof	0	3.76	0.16	11.5
	ta12.1	CT120	12	2	3.74	2.97	0.12	10.6	C	cof+1	2	2.79	0.15	9.7
pH	pH11.1	TG036	11	3	4.91	5.97	0.06	20.0	L	–	5	4.75	0.06	16.3
	pH12.1	H35M47–265C	12		9.01	3.93	0.06	19.1	L	cof+10	11	3.33	0.06	15.8
Lycopene content	lyc4.1	TG287	4		0.14	3.86	265	11.7	C	cof	0	4.65	330	13.8
	lyc11.1	CT065	11		1.11	5.60	336	18.0	C	cof	1	5.46	370	17.8
Carotene content	car2.1	TG167	2	2	4.88	3.87	1.66	14.1	C	cof	4	3.08	1.82	13.8
	car3.1	TG152	3	2	5.77	3.30	1.55	12.8	C	cof	5	1.87 ns	1.31	7.2
	car8.1	TG045	8	2	0.83	3.07	1.44	10.7	C	cof	0	1.74 ns	1.16	5.6

Table 4 (continued)

Trait	QTL	Marker	Chr.	Composite interval mapping								Interval mapping			
				Linked QTLs	Pos.	LOD	Effect	PVE	Parent	COF	Pos.	LOD	Effect		PVE
Pentanal content	pna1.1	CT002	1		2.01	2.62	0.49	8.5	L	cof+1	2	2.09 ns	0.51	6.8	
	pna9.1	H33M51–111C	9		5.40	2.14 ns	0.57	11.3	L	cof	3	2.68	0.76	14.5	
	pna12.1	CT120	12	2	0.74	3.39	0.57	10.9	C	cof	1	3.61	0.67	11.5	
2-Methylbut-2-enal content	bea4.1	TG287	4	2	1.14	8.84	0.42	27.1	C	cof	4	7.10	0.42	23.6	
	bea9.1	TG348	9		3.97	3.33	0.27	13.6	C	cof	8	2.01 ns	0.26	9.2	
Hexanal content	hxa1.1	CT002	1		0.00	9.90	2.12	29.1	L	cof	1	8.09	2.11	25.2	
	hxa4.1	TG287	4	3	2.14	4.27	1.36	15.7	C	–	0	4.70	1.6	14.3	
3-Methylpentan-1-ol content	mno4.1	TG287	4		3.14	25.90	1.00	63.2	L	cof	3	21.56	0.94	55.2	
Hex-3-en-1-ol content	x3o2.1	CD035	2		0.07	3.01	0.08	9.6	C	cof	0	2.38	0.09	7.5	
	x3o4.1	TG123	4		11.00	1.17 ns	0.07	6.4	L	cof	12	3.66	0.13	16.5	
	x3o8.1	TG045	8		2.83	3.40	0.09	12.2	L	cof	5	3.53	0.12	14.1	
2-(Methylthio) ethanol content	meo4.1	TG123	4		9.18	2.69	0.72	14.2	C	cof	9	2.32 ns	0.88	12.1	
	meo8.1	TG045	8	2	2.83	15.98	1.61	48.8	C	cof	3	13.3	1.62	42.2	
3-(Methylthio) propanal content	mta2.1	CT103	2		10.19	3.75	0.19	12.7	L	cof+2	11	3.50	0.21	11.2	
	mta6.1	CT083	6		2.12	6.65	0.24	21.0	C	cof+1	2	4.60	0.23	15.1	
	mta8.1	TG045	8		7.83	3.01	0.18	12.2	C	cof+3	6	2.94	0.21	12.1	
	mta9.1	H33M51–111C	9	2	11.93	3.51	0.21	18.4	C	–	8	2.45	0.23	13.7	
6-Methylhept-5-en-2-one content	mhn4.1	H38M62–188L	4		4.60	4.62	0.58	14.2	C	cof	3	1.92 ns	0.26	6.5	
2-Isobutylthiazole content	ibt2.1	TG167	2		5.88	3.89	0.22	14.6	C	cof+4	7	2.96	0.23	10.6	
	ibt4.1	CT063a	4		11.01	9.60	0.35	31.2	L	cof+2	11	6.26	0.33	21.4	
	ibt6.1	TG365	6	2	5.97	5.71	0.25	18.7	L	cof+2	6	4.99	0.29	16.4	
2-Phenylethanal content	pea3.1	TG152	3		0.77	4.36	0.46	15.1	L	cof	4	2.63	0.51	9.6	
	pea4.1	TG287	4		4.60	2.24 ns	0.44	8.3	C	cof+1	5	5.64	0.69	17.9	
	pea8.1	TG045	8	2	6.83	15.38	1.04	56.4	C	cof+4	7	9.97	0.96	34.6	
Orthomethoxy-phenol content	myp9.1	TG348	9		12.97	47.95	1.18	87.4	L	cof+5	13	45.7	1.23	86.8	
Eugenol content	eug2.1	CT103	2	2	4.19	10.84	0.66	42.3	L	cof	3	11.31	0.47	37.9	
	eug7.1	TG183	7		10.60	3.17	0.19	11.9	L	cof+4	9	1.39 ns	0.18	5.8	
	eug9.1	TG348	9		14.97	4.62	0.39	22.9	L	cof+3	17	4.01	0.33	20.8	

Epistatic interactions

Epistatic interactions were tested between the 84 RFLP markers of the framework map for all the traits. With 3486 tests per trait, a significance threshold of $P < 0.0001$ was chosen. Thus, less than one (0.348) interaction could occur by chance. At this threshold 14 significant associations were detected (Table 5). Significant interaction was detected for MNO between CT85 on chromosome 3 and TG339 on chromosome 4 (20 cM apart from a QTL for MNO). RILs with the Cervil allele on CT85 and the Levovil allele on TG339 showed the highest MNO content. Seven associations concerned EUG on two genomic regions of chromosomes 2 and 9. The most significant one was between CT103 on chromosome 2 and TG8 on chromosome 9, where the two major QTLs for EUG were detected (Fig. 1). Individuals with Levovil alleles at both markers contained 5-fold more EUG than individuals with the three other allele combinations.

Discussion

Breeding for the organoleptic quality of tomato is difficult due to the complexity of this characteristic. In order to understand the genetic control of organoleptic quality, the major physical and chemical components responsible for its variation were evaluated. Fruit quality has often been studied for processing tomato. The major traits examined were fruit weight, soluble-solids content, and pH. These traits are not sufficient to describe fresh market tomato and so additional chemical traits were also studied. Titratable acidity and pH are both important criteria for tomato eating quality (Kader et al. 1977; Baldwin et al. 1991). The contents of pigments, such as lycopene and carotene, are related to fruit color but also to nutritional quality, since carotene is a precursor of vitamin A and the benefits of lycopene have been shown by Rao and Agarwal (1998). Moreover, the aroma volatiles are responsible for the tomato-like flavor. Many studies concerned the qualitative and quantitative composition of aroma volatiles in tomato fruits (Buttery

Table 5 Significant epistatic interactions ($P < 0.0001$) detected between the 84 RFLP markers. The Prob. (probability), the R^2 (percentage of the phenotypic variation explained) of the epistatic interaction, and the means of the four genotype classes are detailed

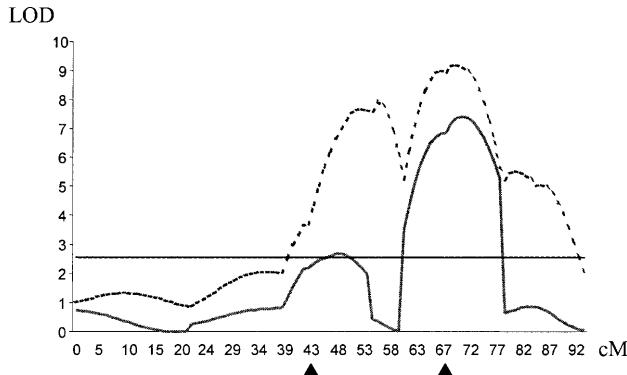
Trait	Marker 1	Marker 2	Chromosomes	Prob.	R^2	CC	LC	CL	LL
ELA	TG365	TG314	6-6	9.40E-05	12.8	20.75	24.40	24.62	22.19
b	TG077	LED5	1-6	7.81E-05	14.0	18.90	17.76	17.41	19.49
b	OPAE4-0.9C	H33M62-110C	2-9	5.34E-05	9.1	17.64	18.31	18.02	21.50
SSC	TG365	TG314	6-6	7.58E-05	13.2	7.35	6.85	6.61	7.41
pH	Cel1	TG030	8-11	9.32E-05	12.7	4.18	4.23	4.27	4.23
MNO	CT085	TG339	3-4	3.34E-05	17.0	0.57	1.59	4.46	0.96
EUG ^(a)	CT103	TG008	2-9	5.29E-08	14.2	0.90	1.08	1.00	5.29
EUG	CD036	TG348	5-9	5.05E-06	16.1	1.31	1.13	1.72	6.12

^(a) Seven epistatic associations between linked markers on chromosomes 2 (to CT103) and 9 (to TG008) were detected for EUG, but only the most significant one is indicated

et al. 1987; Baldwin et al. 1991; Krumbein and Auerswald 1998) but poor knowledge of their genetic control is available.

Trait distribution and transgression

Parent values were significantly different for 18 of the 32 studied traits. Cervil showed higher values especially for traits related to dry matter weight and for some aroma volatiles. This was expected since Cervil was chosen for its high aroma intensity and good flavor. Levovil did not show any special aroma characteristics but had higher values for three aroma volatiles, HXA, MYP and EUG. MYP and EUG contents corresponded to odors generally not appreciated (pharmaceutical odors). HXA could improve the aroma of tomato juice in the concentration range of 0.1–0.5 ppm, but above a 0.5-ppm concentration its flavor is similar to rancid vegetable fats (Kazeniac and Hall 1970). It was not possible to compare HXA concentration to that mentioned in Kazeniac and Hall (1970) due to differences in the quantification method. The F_1 hybrid was intermediate between the two parent values for several traits such as fruit elasticity, dry matter weight and carotene content, suggesting additivity of these traits. The F_1 hybrid value was close to the lower parent for fruit weight, diameter and color, pH, and for the aroma volatiles HXA and IBT. This implied the dominance of the small values.


Low heritability (< 0.3) of some traits (as for lycopene and carotene content) corresponded to high variation between the repetitions (over the 6 weeks) and could result either from the effect of climate variation or from the physiological variation induced by change of the plant with age. In contrast, traits like sugar content and titratable acidity showed high heritabilities (> 0.5), suggesting a minimal effect of the environment under greenhouse-controlled conditions. Six of the eighteen aroma volatiles significantly different between the parent lines did not show any significant differences between RILs, because of strong variation between the three repetitions. Transgression, observed for 12 of the 26 traits, could be explained by the presence of complementary QTL alleles in the two parental lines. In many cases,

transgression was associated with the detection of QTLs having allelic effects opposite to those predicted by the parents. However, some traits like the aroma volatiles MEO, MYP and EUG, despite their transgressive segregation, did not show such QTLs with an effect opposite to the parents. Transgression proved that Levovil contains QTL alleles increasing some pleasant volatile contents despite its common flavor, but also increasing L, a, b, dry matter weight, and sugar-content values.

Relationships between traits

Some correlations were due to physiological relationships between traits. Positive correlations were observed, as expected, between the major components of dry matter. Fruit weight was negatively correlated to soluble-solids content as in Tanksley et al. (1996), Bernacchi et al. (1998) and Chen et al. (1999). However, in Grandillo and Tanksley (1996) this correlation was positive.

Low fruit pH of tomato allows the reduction of processing time. The pH value is also important for the flavor of fresh market tomato as variation in sour taste was shown to be due to pH and titratable acidity (Kader et al. 1977). The correlation between these traits was positive or negative depending on the samples studied (Davies and Hobson 1981). In our study, titratable acidity and pH were negatively correlated. Actually, relationships between these traits are complex and several buffers can interact with them (Paulson and Stevens 1974). Stevens (1986) proposed that both traits should be measured for evaluating the quality of fresh market tomato. Color parameters were negatively correlated to soluble-solid content. This result is in contradiction to the findings of Fulton et al. (1997) and Tanksley et al. (1996) from interspecific crosses. A positive correlation between color parameters (L and b) and fruit weight was found in our study, which is consistent with the results of Fulton et al. (1997). Tanksley et al. (1996) and Bernacchi et al. (1998) reported an opposite correlation between these traits in progenies involving *Lycopersicon pimpinellifolium* and *Lycopersicon hirsutum*. A positive correlation was detected between fruit weight and elasticity while a poor negative correlation

Fig. 2 Comparison of the LOD-score plot for sugar content along chromosome 2 estimated by IM (dotted lines) and CIM with a 10 cM window size (solid line). The abscissa axis represents the chromosome distance in Kosambi cM. The horizontal line at LOD = 2.56 indicates the LOD threshold for detecting a QTL by CIM. Black arrows show the localization of co-factors

was detected between fruit weight and firmness, as in Fulton et al. (1997). This implied that large fruits were more elastic and less firm than small fruits. Actually, the lower elasticity of small fruits was also suggested by the higher number of cracks observed (data not shown). For aroma volatiles, some correlations were in accordance with the metabolic pathway they originated from. For instance, PNA, HXA and X3O, which derived from fatty acids, were expected to exhibit correlated contents. PNA content was positively correlated to HXA and X3O, but HXA and X3O were not correlated. For aroma volatiles deriving from amino acids, positive correlations were found between MTA, BEO and PEA contents, and between MNO and PEA contents. EUG and MYP contents were positively correlated since both are phenolic compounds (Kazeniac and Hall 1970). MHN, which derived from lycopene oxidation, was positively correlated with lycopene content. Some correlations were less expected. For example, MNO and X3O contents, derived from different kinds of metabolism, were positively correlated. Some aroma volatiles were also positively correlated to color parameters (BEA, HXA, MHN and PEA) and others (MNO and X3O) negatively. The evolution of aroma contents in relation to fruit ripening could explain such relationships.

Methods of QTL detection

The composite interval mapping method allowed more than one QTL to be mapped on the same chromosome and increased the precision of the QTL position and the R^2 evaluation (Zeng 1994). Most of the QTLs (66%) had higher R^2 values in CIM than in IM, while their additive effects were higher in IM. The power of the CIM test is lower than that of IM when only one QTL occurred on a chromosome since it involved conditional tests. Estimation of additive effects by CIM is, however, more accurate. CIM analyses were especially useful on chromo-

some 2 where several traits were each controlled by two or three QTLs in a region of 36 cM. Figure 2 shows a LOD-score plot for sugar content as revealed by IM and CIM on chromosome 2. IM and CIM each detected two peaks. While the two IM peaks had similar and high LODs, and the LOD between the two peaks was also high, CIM allowed the detection of two well-dissociated peaks with a smaller LOD for the first peak. Despite the advantages of CIM, the localization of QTLs linked within less than 20 cM was still inaccurate. We have undertaken fine mapping studies, which may allow evaluation of the actual QTL number.

QTL detection

Some QTLs (for fruit weight and diameter, and the aroma volatiles MNO and MYP) explained a large part of the phenotypic variation and could be considered as major genes. By contrast, for some traits like pH and pigment contents, only a small part of the phenotypic variation was explained. High positive correlations were detected between the heritability and the overall percentage of variation explained by QTLs per trait (between 0.7 and 0.8 in IM and CIM). The contents of lycopene, carotene and the aroma volatiles PNA, X3O and MHN, had low R^2 and low heritabilities.

Two-way ANOVAs showed significant epistasis for six traits. The percentage of significant epistatic interactions was slightly higher than the percentage expected by chance. In tomato, only minimal evidence of epistasis was found in conventional segregating populations (Paterson et al. 1991; Grandillo and Tanksley 1996) and the frequencies of statistically significant QTL interactions were close to the frequencies expected to occur by chance. A major QTL was detected for the aroma volatile MNO on chromosome 4 (TG287), while there was no significant difference between parental MNO contents. The large effect of this QTL may be a residue of the epistatic effect between CT85 (on chromosome 3) and TG339 (on chromosome 4). Actually, the MNO content of RILs having a Cervil allele at CT85 and a Levovil allele at TG339 is 8-fold higher than those with a Cervil allele at TG339. The same situation was detected for EUG content, and QTLs on chromosomes 2 and 9 may be a residual bias of the epistatic interaction, as the L alleles are necessary at both QTLs to observe a significant difference in EUG content.

QTL clustering and co-localization of QTLs

QTLs were localized on all the chromosomes except chromosome 5, but they were not evenly dispersed. QTLs for aroma volatiles were mainly localized on chromosomes 4 (eight QTLs), 8 (four QTLs), and 9 (five QTLs), suggesting the involvement of these regions in aroma-volatile metabolisms. Other chemical traits were mainly controlled by three linked regions on chromosome 2 (ten QTLs), and by QTLs on chromosomes 3

(three QTLs), 9 (three QTLs) and 11 (three QTLs). Physical traits were approximately controlled by the same regions on chromosomes 2 (eight QTLs in two regions), 3 (three QTLs), 4 and 9 (five QTLs each). The region characterized by the largest cluster of QTLs was at the lower end of chromosome 2 (a region of 50 cM). The major QTLs for fruit weight, fruit elasticity, brightness (L), dry matter weight, soluble-solids, sugar and EUG contents were localized in this cluster. Furthermore, most of these traits were each represented by more than one peak linked in less than 20 cM (Table 4). Some QTL co-localizations could be due to physiological relationships. Fruit elasticity QTLs were detected on two chromosomes (4 and 9) close to QTLs for L, a and b, suggesting an association between fruit elasticity and color development. Frequent co-localizations were observed between QTLs for dry matter weight and titratable acidity, as expected, since acids are among the major components of dry matter weight. Nevertheless QTLs for sugar content, which composed 50% of the dry matter, were not detected in the same regions. Only one co-localization between these traits was observed on chromosome 2. The negative correlation between fruit weight and sugar content or dry matter weight is well illustrated by the co-localization of QTLs of these traits on chromosomes 2, 3 and 11. Such co-localizations were found in several studies between fruit weight and soluble-solids content (Paterson et al. 1991; Goldman et al. 1995). In such cases, it is difficult to distinguish the pleiotropic effect of a single gene from the effects of tightly linked loci. Since these QTLs are frequently co-localized, one can assume the pleiotropic effect of a single gene. On chromosome 4, in a region of 30 cM, QTLs for lycopene content, color parameters (L, a, b) and seven aroma volatiles (derived from amino acids, fatty acids and lycopene degradation) were detected. Cervil provided favorable alleles for all these traits except for the aroma volatiles MNO and MEO. The co-localization of QTLs for lycopene content and color parameters proved that the evaluation of color is directly related to lycopene content. Two hypotheses could explain the co-localization of aroma volatile, lycopene content and color QTLs. (1) The development of aroma volatiles depends on the ripening stage, which is associated with the fruit color. While the contents of some aroma volatiles decrease with ripening, most of them increase. (2) Some aroma volatiles can derive from carotenoid pigment degradation, such as lycopene and carotene. In the same region, Giovannoni et al. (1999) localized an ethylene-related cDNA (ERT16) showing homology with an ABA stress-related protein. Acting upstream of fruit changes, such a gene could be responsible for the variation in many fruit quality characteristics. Other co-localizations of QTLs for aroma volatiles and carotene content were identified on chromosomes 2 and 8. QTLs of aroma volatiles derived from the same metabolic pathway were often co-localized, as on chromosome 1 for PNA and HXA, both derived from fatty acid metabolism, and on chromosome 9 for EUG and MYP, both phenolic compounds.

Comparison of QTLs among tomato species

This is the first QTL study in tomato based on a cross between two *L. esculentum* lines. The QTL localizations were compared with those detected in other studies involving crosses between *L. esculentum* and wild tomato species. The QTL localizations of only 11 traits could be compared, since QTLs for fruit elasticity, titratable acidity, carotene content, and aroma-volatile contents were never previously studied. QTLs were considered to be in the same region when they mapped within the same 20-cM region of the high-density tomato map (Tanksley et al. 1992). Since all QTL studies on tomato concerned processing tomato, the most-studied traits were fruit weight, soluble-solids content, and pH. On chromosome 6, only two QTLs for aroma volatiles were detected, whereas other studies on tomato quality traits detected a large number of QTLs on this chromosome (Paterson et al. 1991; Goldman et al. 1995). Actually, the *sp* (*self pruning*) gene, which controls the determinate growth habit, is localized on chromosome 6. Many QTLs detected in its neighborhood, in populations segregating for this gene, could be due to the pleiotropic effects of *sp* (Paterson et al. 1988; Goldman et al. 1995). In the present study, both parent lines were *sp*⁺. A major QTL for fruit weight (*fw2.2*) mapped to the same position on chromosome 2 (near TG167) in the green-fruited species *Lycopersicon pennellii* and *L. hirsutum*, the orange-fruited species *Lycopersicon cheesmanii*, and the red-fruited species *L. pimpinellifolium* (Paterson et al. 1991; Alpert et al. 1995; Bernacchi et al. 1998). Here, we found that the most-significant QTL for fruit weight also mapped on chromosome 2 between TG492 and TG167. It explained 46% of the phenotypic variation and so could be considered as a major gene. *fw2.2* would then represent an orthologous (derived by speciation) fruit-weight QTL distributed in wild tomato species, and domestication of the cultivated tomato seemed to have involved a macro-mutation at this locus (Alpert et al. 1995). It would thus also distinguish small vs. large fruits in *L. esculentum*. The other fruit-weight QTLs were localized on chromosome 3 in a common position with those detected in crosses with *L. hirsutum* and *L. pimpinellifolium* (Bernacchi et al. 1998; Chen et al. 1999), on chromosome 11 in the same region as a QTL detected in a cross with *L. pimpinellifolium* (Grandillo and Tanksley 1996), and on chromosome 12 close to a QTL detected in a cross with *Lycopersicon peruvianum* (Fulton et al. 1997).

Soluble-solids content QTLs shared the same positions on chromosome 2 in our study as the QTLs detected in crosses with *L. cheesmanii* (Paterson et al. 1991), *L. pennellii* (Eshed and Zamir 1995), *L. pimpinellifolium* (Tanksley et al. 1996; Chen et al. 1999) and *L. peruvianum* (Fulton et al. 1997). The QTL for soluble-solid content on chromosome 9 also mapped in the same region as a soluble-solids content QTL detected by Fulton et al. (1997). For pH, the QTL on chromosome 12 was localized in the same region as that detected in a cross with *L. hirsutum* (Bernacchi et al. 1998). The fruit-color QTL

on chromosome 4 was localized in the same region as the QTL detected by Bernacchi et al. (1998), where the fruit color was estimated visually from canned paste. The fruit color QTL on chromosome 9 shared the same position as QTLs for external (L, a and b) and internal color (visually scored) detected in a progeny involving *L. peruvianum* (Fulton et al. 1997). Among the two QTLs detected for lycopene content in our study, only *lyc4.2* was close to the QTL detected by Chen et al. (1999) on chromosome 4. QTLs for fruit firmness (evaluated by a penetrometer) on chromosome 4 (*fir4.1*) and chromosome 9 (*fir9.1*) were detected in the same regions as the fruit-firmness (evaluated by hand squeezing) QTLs detected in crosses with *L. pimpinellifolium* (Tanksley et al. 1996) and *L. peruvianum* (Fulton et al. 1997), respectively.

Conclusion

This is the first study concerning QTLs for organoleptic quality in fresh market tomato. We detected 81 QTLs involved in the major physical and chemical components of organoleptic quality. In a companion paper, QTLs for sensory traits will be presented (Causse et al. 2000). Physical and chemical traits could be an alternative approach to routinely measure quality traits. Tomato breeders need to dispose of such selection criteria both efficient and easy to assess. Recently, the fruit organoleptic quality has seen a surge of interest, and QTLs of this characteristic have been mapped in a few species. For example, the organoleptic quality of peach (Dirlewanger et al. 1999) was studied on traits such as fresh weight, color, pH, titratable acidity, soluble-solids content, acid and sugar contents. The QTLs were mainly localized on two linkage groups. In *Citrus*, molecular markers linked to a gene controlling fruit acidity were detected (Fang et al. 1997). QTLs for chemical (like starch and sucrose content) and sensory (like aroma, sweetness, starchiness, and tenderness) traits were examined in sweet corn (Azanza et al. 1996). Kennard and Havey (1995) studied QTLs for the length, diameter, and color of cucumber. QTLs of aroma volatiles were less well studied. In rice, the concentration of the main compound of rice aroma (2-acetyl-1-pyrroline) is controlled by a major gene and two QTLs (Lorieux et al. 1996). The QTLs found in this study could be used in marker-assisted selection in order to transfer the pleasant flavor characteristic of the Cervil line into elite lines with larger fruits. As few clusters were detected, and some QTLs showed high effects, future genetic progress can be expected. Particular attention must, however, be paid when transferring QTLs with opposite effects, as for fruit weight and dry matter weight. The QTL map should allow the selection of regions where only QTLs for sugar or acid content were detected without fruit weight QTLs.

Acknowledgements Many thanks to P. Duffé, M. Milesi and J. Valentin for their excellent technical assistance, to F. Duprat for his helpful suggestions on physical analyses, to V. Lefebvre,

B. Moury and C. Caranta for their review of the manuscript. This investigation was a collaborative study between INRA, CTIFL and the private seed companies Clause, Vilmorin, Tézier and Gautier. It was funded by the French Ministry of Agriculture. V. Saliba-Colombani thanks the Lebanese Ministry of education for providing her doctoral fellowship. The experiments comply with current French laws.

References

Acree TE, Barnard J, Cunningham DG (1984) A procedure for the sensory analysis of gas chromatographic effluents. *Food Chem* 14: 273–286

Adda J, Richard H (1991) Dosage des arômes. In: Multon JL (ed) Techniques d'analyse et de contrôle dans les industries agro-alimentaires. Science et techniques alimentaires. Lavoisier, Paris, pp 269–284

Alpert KB, Grandillo S, Tanksley SD (1995) *fw2.2*: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. *Theor Appl Genet* 91: 994–1000

Azanza F, Tadmor Y, Klein BP, Rocheford TR, Juvik JA (1996) Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn. *Genome* 39: 40–50

Baldwin EA, Nisperos-Carriero MO, Moshonas MG (1991) Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. *J Am Soc Hort Sci* 116: 265–269

Basten CJ, Weir BS, Zeng ZB (1997) QTL cartographer. A reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, Raleigh, NC, USA

Berger RG (1996) Aroma compounds in food. In: Berger RG (ed) Biotechnology of aroma compounds. Springer, Berlin Heidelberg New York, pp 1–10

Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from *Lycopersicon hirsutum*. *Theor Appl Genet* 97: 381–397

Bertin N, Guichard S, Leonardi C, Longenesse JJ, Langlois D, Navez B (2000) Seasonal evolution of the quality of fresh greenhouse tomatoes under Mediterranean conditions, affected by air vapour pressure deficit and plant fruit load. *Ann Bot* 85: 741–750

Buttery RG, Teranishi R, Ling L (1987) Fresh tomato aroma volatiles: a quantitative study. *J Agric Food Chem* 35: 540–544

Causse M, Saliba-Colombani V, Buret M, Lesschaeve I, Schlich P, Issanchou S (2000) Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. *Theor Appl Genet* 102: 273–283

Chen FQ, Foolad MR, Hyman J, St Clair DA, Beeleman RB (1999) Mapping QTLs for lycopene and other fruit traits in a *Lycopersicon esculentum* × *L. pimpinellifolium* cross and comparison of QTLs across tomato species. *Mol Breed* 5: 283–299

Davies JN, Hobson GE (1981) The constituents of tomato fruit. The influence of environment, nutrition and genotype. *Crit Rev Food Sci Nutr* 15: 205–280

Dennison RA, Hall CB, Nettles VF (1953) Factors influencing tomato quality. *Proc Fla State Hort Soc* 65: 108–111

Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach [*Prunus persica* (L.) Batsch]. *Theor Appl Genet* 98: 18–31

Eshed Y, Zamir D (1995) An introgression-line population of *Lycopersicon pennellii* in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. *Genetics* 141: 1147–1162

Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. *Genetics* 143: 1807–1817

Fang DQ, Federici CT, Roose ML (1997) Development of molecular markers linked to a gene controlling fruit acidity in citrus. *Genome* 40: 841–849

Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. *Theor Appl Genet* 97: 1133–1144

Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of *Lycopersicon peruvianum* to the cultivated tomato and comparisons with QTLs found in other wild species. *Theor Appl Genet* 95: 881–894

Giovannoni J, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grieron D, Klee H (1999) Genetic mapping of ripening and ethylene-related loci in tomato. *Theor Appl Genet* 98: 1005–1013

Goldman IL, Paran I, Zamir D (1995) Quantitative locus analysis of a recombinant inbred line population derived from a *Lycopersicon esculentum* × *Lycopersicon cheesmanii* cross. *Theor Appl Genet* 90: 925–932

Grandillo S, Tanksley SD (1996) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species *Lycopersicon pimpinellifolium*. *Theor Appl Genet* 92: 935–951

Kader AA, Stevens MA, Albright-Holton M, Morris LL, Algazi M (1977) Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. *J Am Soc Hort Sci* 102: 724–731

Kazeniac SJ, Hall RM (1970) Flavor chemistry of tomato volatiles. *J Food Sci* 35: 519–530

Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber. QTL detection, confirmation and comparison with mating-design variation. *Theor Appl Genet* 91: 53–61

Kosambi DD (1944) The estimation of map distances from recombination values. *Ann Eugen* 12: 172–175

Krumbein A, Auerswald H (1998) Characterization of aroma volatiles in tomatoes by sensory analyses. *Nahrung* 42: 395–399

Lander ES, Green P, Abrahamsen J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. *Genomics* 2: 174–181

Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. *Genetics* 121: 185–199

Langlois D, Etievant PX, Pierron P, Jorrot A (1996) Sensory and instrumental characterisation of commercial tomato varieties. *Z Lebensm Unters Forsch* 203: 534–540

Lime BJ, Griffiths FP, O'Connor RT, Heinzelman DC, McCall ER (1957) Spectrophotometric methods for determining pigmentation – beta-carotene and lycopene – in Ruby red grapefruit. *Agric Food Chem* 5: 941–944

Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP version 3.0. Whitehead Institute Technical Report, 3rd edn

Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996). *Theor Appl Genet* 93: 1145–1151

Mutschler MA, Doerge RW, Liu S-C, Kuai JP, Liedl BE, Shapiro JA (1996) QTL analysis of pest resistance in the wild tomato *Lycopersicon pennellii*: QTLs controlling acylsugar level and composition. *Theor Appl Genet* 92: 709–718

Paran I, Goldman I, Zamir D (1997) QTL analysis of morphological traits in a tomato recombinant inbred-line population. *Genome* 40: 242–248

Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. *Nature* 335: 721–726

Paterson AH, Deverna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. *Genetics* 124: 735–742

Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. *Genetics* 127: 181–197

Paulson KN, Stevens MA (1974) Relationships among titratable acidity, pH and buffer composition of tomato fruits. *J Food Sci* 39: 354–357

Petro-Turza M (1987) Flavor of tomato and tomato products. *Food Rev Int* 2: 309–351

Rao AV, Agarwal S (1998) Bioavailability and *in vivo* antioxidant properties of lycopene from tomatoe products and their possible role in the prevention of cancer. *Nutr Cancer* 31: 199–203

Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of AFLP, RAPD and RFLP markers for the construction of an intraspecific map of the tomato genome. *Genome* 43: 29–40

SCAR Agro-Food Tomato Working Group (1991) Measurement of the quality of tomatoes: recommendations of an EEC working group. In: Eccher Zerbini P, Gorini F, Polesello A (eds) I.V.T.P.A., Milano, pp 1–36

Stern DJ, Buttery RG, Teranishi R, Louisa L (1994) Effect of storage and ripening on fresh tomato quality, part I. *Food Chem* 49: 225–231

Stevens MA (1972) Relationships between components contributing to quality variation among tomato lines. *J Am Soc Hort Sci* 97: 70–73

Stevens MA (1986) Inheritance of tomato fruit quality components. *Plant Breed Rev* 4: 273–311

Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pinedo O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. *Genetics* 132: 1141–1160

Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative *L. pimpinellifolium*. *Theor Appl Genet* 92: 213–224

Vicente MC de, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. *Genetics* 134: 585–596

Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. *Proc Natl Acad Sci USA* 90: 10972–10976

Zeng ZB (1994) Precision mapping of quantitative trait loci. *Genetics* 136: 1457–1468